System
before tether was cut
Vorb –
orbital velocity of the system
Vc – capsule velocity.
where w - angular velocity
Tether length
Capsule is a material particle
q - degree of vertical
deviation
Model
of the tether
Tether is divided into N parts
Each part is exerted by next forces:
Fg – gravity force Fs –
air drag force
Fci, Fci-1 – tighting force (from
parts i+1 and i-1)
For each part we must solve system of equations
Where . For axis X
, where
-
air density.
The behavior
of tether systems strongly depends on speed w and angle q at the moment of cutting the
tether.
w < wa
wa – acceptable velocity, which provide the system to descend faster
without tether curling
w ~ wa
w > wa
q,° |
w,radian/s |
T, s |
H, km |
Vatm, m/s |
|
-
0.55 |
-0.087 |
2500,00 |
294.54 |
7736.153 |
-0.0044 |
-
4.97 |
-0.071 |
2500,00 |
102.88 |
7870.356 |
-0.5009 |
-27.75 |
-0.068 |
2134.77 |
100.07 |
7841.792 |
-0.6538 |
-28.42 |
-0.067 |
2076.38 |
100.02 |
7853.078 |
-0.4502 |
-29.09 |
-0.066 |
2025.65 |
100.1 |
7889.012 |
-0.7203 |
-31.63 |
-0.062 |
1870.01 |
100.07 |
7898.699 |
-1.2857 |
-35.68 |
-0.054 |
1695.18 |
100.05 |
7852.437 |
-1.0876 |
-38.71 |
-0.047 |
1595.7 |
100.07 |
7883.782 |
-1.6178 |
-39.18 |
-0.046 |
1582.36 |
100.12 |
7884.907 |
-1.5416 |
-39.63 |
-0.045 |
1569.55 |
100.18 |
7851.654 |
-1.1541 |
-40.07 |
-0.044 |
1557.34 |
100.19 |
7862.066 |
-1.6279 |
-40.5 |
-0.042 |
1545.6 |
100.01 |
7880.388 |
-1.7694 |
-40.92 |
-0.041 |
1534.55 |
100.18 |
7904.365 |
-1.6847 |
-41.33 |
-0.04 |
1524.5 |
100.01 |
7850.917 |
-0.8665 |
-44.75 |
-0.028 |
1444.53 |
100.12 |
7846.288 |
-2.3742 |
-45.55 |
-0.025 |
1427.92 |
100.17 |
7811.891 |
-1.8289 |
-45.79 |
-0.024 |
1423.17 |
100.17 |
7879.122 |
-1.5613 |
-46.44 |
-0.02 |
1409.99 |
100.15 |
7872.515 |
-1.6017 |
-46.64 |
-0.019 |
1406.2 |
100.02 |
7869.419 |
-1.6239 |
-48.12 |
-0.002 |
1377.96 |
100.15 |
7880.931 |
-1.5227 |
q - degree of vertical deviation
w
- angular velocity
T - time
H - Height
Vatm - capsule velocity at
H=100 km (or T=2500 s)
- angle
of incidence